Comments on Are 3 10% chances better than one 30% chance (when penalized by a variable for failures)?
Post
Are 3 10% chances better than one 30% chance (when penalized by a variable for failures)?
I'm playing a computer game in which you can spend 100 coins to be given a 10% chance
to upgrade a weapon, or spend 200 coins for a 20%
chance, or 300 coins for a 30%
chance and so on, up to 1000 coins for a 100% chance.
There is no penalty for failure, only that you lose the coins spent.
My theory is that if you only have 300 coins to spend, it would be better to do 3 attempts since 10% + 10% + 10% = 30%
and you have the added bonus of having a chance to spend less coins if it succeeds before the 3rd try.
Not sure if my theory is correct because a 100% chance is not the same as 10 10% chances. Also after getting failures, the odds remain the same. But I don't have the logic/math knowledge to have an answer and explanation.
Note:
For the purpose of the question, let's assume the game is somehow computing true random numbers and therefore able to give true 10%-100% odds
Upgrading weapons is something done very very often. Let's say the average player wants to upgrade ~1,000 times.
1 comment thread