Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Comments on Which of the multiple definitions of correlation to use?

Post

Which of the multiple definitions of correlation to use?

+5
−0

In optics1, we have a notion of coherence, that's defined as a normalised correlation/cross-correlation/autocorrelation function: Simplifying notation from the linked Wiki page we can write the (un-normalised, first order) correlation function $$G^{(1)} = \left\langle XY\right\rangle,$$ where I'm using $\left\langle\ldots\right\rangle$ to represent the expectation value, which can then be normalised as $$g^{(1)} = \frac{\left\langle XY\right\rangle}{\sqrt{\left\langle X^2\rangle\langle Y^2\right\rangle}},$$ where $X$ and $Y$ are some matrices/operators/variables etc.

All seems well and good... Except the problem was already mentioned in the first sentence - the correlation between $X$ and $Y$ is defined as $$g = \frac{\left\langle XY\right\rangle - \left\langle X\rangle\langle Y\right\rangle}{\sqrt{\left\langle X^2\right\rangle - \left\langle X\right\rangle^2}\sqrt{\left\langle Y^2\right\rangle - \left\langle Y\right\rangle^2}},$$ which is the normalised covariance $$G = \left\langle XY\right\rangle - \left\langle X\rangle\langle Y\right\rangle.$$

So, how do we reconcile these similar yet different definitions? More importantly, how do you know which is the right one to use? In order to tell how correlated two sets of data taken from the expectation of two different measurements of a signal are.

Initially, it seemed like the former might apply to operators and matrices in physics, while the latter applies to variables in statistics. However, there are a couple of issues with this - in taking the expectation of an operator, it instead becomes a continuous variable, which can be treated statistically. The second is that I sometimes see the first definition of correlation $G^{(1)}$ used alongside the definition of covariance $G$, which if nothing else, is a confusing way of mixing different definitions.

  1. Yes, I know, starting a maths question with something about physics... Bear with me? Please?

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.
Why should this post be closed?

1 comment thread

General comments (6 comments)
General comments
MathPhysics‭ wrote over 4 years ago · edited over 4 years ago

The latter is the general definition of correlation. However, since in optics we deal with fields having zero time average, because they are sinusoidal in time, we have $\langle X \rangle = \langle Y \rangle =0$, so we get the former definition.

Mithrandir24601‭ wrote over 4 years ago

See my comment to this answer - we're generally not time averaging anything - the expectation values are taken at specific spatial and temporal locations

MathPhysics‭ wrote over 4 years ago

In the definition of coherence in optics we always time average fields. The definitions of higher order coherences is a different subject; they are not correlation of some variables. They are defined in some way analogous to the first order one.

Mithrandir24601‭ wrote over 4 years ago

I'm not sure who told you that, but we really don't - is useful because it doesn't average over time (or frequency if that's your thing). In classical physics, $g^{(2)}$ is intensity correlations. Anyway, this question is explicitly about the maths. You're trying to 'frame challenge' my argument but I'm entirely convinced these are both valid definitions and my question still holds

MathPhysics‭ wrote over 4 years ago

According to the ergodic hypothesis in statistical physics, the time average of a process is the same as the average over the statistical ensemble. So, in the definition of the degree of the degree of first-order coherence we have $\langle E(t_1) E(t_2) \rangle = \frac{1}{T} \int_{T} E(t_1)E(t_2) dt_1$.

Mithrandir24601‭ wrote over 4 years ago

Except that's not what I'm doing here, so why is that relevant to the question?