Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »

Review Suggested Edit

You can't approve or reject suggested edits because you haven't yet earned the Edit Posts ability.

Approved.
This suggested edit was approved and applied to the post over 3 years ago by DNB‭.

11 / 255
How does the change of variable $\color{red}{r↦n−r}$ transmogrify $\sum\limits_{r=0}^n2^{n-r}\binom{n+r}{n}=2^{2n}$ into $\sum\limits_{k=0}^{n} \frac{\binom{2n-k}{n}}{2^{2n-k}}=1$?
  • I'm unskilled at performing algebra with Capita-sigma notation. [This comment by a deleted user](https://math.stackexchange.com/questions/2219125/prove-using-combinatorics-sum-limits-r-0n2n-r-binomnrn-22n?rq=1#comment4564672_2219125) alleges that the "change of variables $\color{red}{r↦n−r}$" will transmogrify $\sum\limits_{r=0}^n2^{n-r}\binom{n+r}{n}=2^{2n}$ into $\sum\limits_{k=0}^{n} \frac{\binom{2n-k}{n}}{2^{2n-k}}=1$.
  • I got stuck. If I replace $r$ with $\color{red}{n−r}$, then $\sum\limits_{r=0}^n 2^{n-r} \binom{n+r}{n}=2^{2n} \iff \sum\limits_{\color{red}{n−r}=0}^n 2^{n - \color{red}{(n−r)}} \binom{n+\color{red}{(n−r)}}{n}=2^{2n} \iff sum \limits_{\color{red}{r=n}}^n 2^{\color{red}{r}} \binom{n+\color{red}{(n−r)}}{n}=2^{2n}$. Can someone please rectify my MathJax?
  • Why can I bring $2^{2n}$ on the RHS into the indexed variable (representing each term of the sum)? On the LHS, $n$ are the lower and upper bounds of summation. So $n$ isn't a Free Variable. I don't know if I'm using "Free Variable" correctly, but what I mean is that because if the RHS were $2^{2x}$, then I can bring $2^{2x}$ into the indexed variable because $x$ never appears in the capital-sigma notation.
  • I'm unskilled at performing algebra with Capita-sigma notation. [This comment by a deleted user](https://math.stackexchange.com/questions/2219125/prove-using-combinatorics-sum-limits-r-0n2n-r-binomnrn-22n?rq=1#comment4564672_2219125) alleges that the "change of variables $\color{red}{r↦n−r}$" will transmogrify $\sum\limits_{r=0}^n2^{n-r}\binom{n+r}{n}=2^{2n}$ into $\sum\limits_{k=0}^{n} \frac{\binom{2n-k}{n}}{2^{2n-k}}=1$.
  • I got stuck. If I replace $r$ with $\color{red}{n−r}$, then $\sum\limits_{r=0}^n 2^{n-r} \binom{n+r}{n}=2^{2n} \iff \sum\limits_{\color{red}{n−r}=0}^n 2^{n - \color{red}{(n−r)}} \binom{n+\color{red}{(n−r)}}{n}=2^{2n} \iff \sum\limits_{\color{red}{r=n}}^n 2^{\color{red}{r}} \binom{n+\color{red}{(n−r)}}{n}=2^{2n}$
  • Why can I bring $2^{2n}$ on the RHS into the indexed variable (representing each term of the sum)? On the LHS, $n$ are the lower and upper bounds of summation. So $n$ isn't a Free Variable. I don't know if I'm using "Free Variable" correctly, but what I mean is that because if the RHS were $2^{2x}$, then I can bring $2^{2x}$ into the indexed variable because $x$ never appears in the capital-sigma notation.

Suggested over 3 years ago by Moshi‭